ENGAGING SCIENCE FACULTY IN PROGRAM ASSESSMENT: Planting Seeds and Cultivating Growth

BS Astrophysics & BA Astronomy
Approved in August 2014, the undergraduate Astro- program is staffed by the ~30 research faculty at the Institute for Astronomy in Manoa. The combined majors currently include 16 women and 20 men, with an additional 13 students pursuing a minor.

Skill Map Example

<table>
<thead>
<tr>
<th>Subject</th>
<th>Orbital motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect</td>
<td>Iron</td>
</tr>
<tr>
<td>Motion</td>
<td>Basic Usage</td>
</tr>
<tr>
<td>Energy</td>
<td>General 2-body problem. Perturbations; secular evolution.</td>
</tr>
<tr>
<td>Reaction</td>
<td>Mastery</td>
</tr>
<tr>
<td>Product</td>
<td>Non-Keplerian potentials; orbital invariants</td>
</tr>
</tbody>
</table>

Student Learning Objectives
A top-level curriculum map was written as part of the program proposal. Via faculty interviews, we are filling in the progression of skills and knowledge.

Curriculum Alignment
We aim to have each instructor “hand-off” to the next, along with course planning sessions to help all faculty build a sense of where their course’s role.

Signature Assignments
Identifying a few key types of tasks in which students build proficiency over several semesters. Common rubrics help students understand what skills they should develop.

Course Design
Work with faculty to define course goals, write summative assessments, backwards design, and implement active learning and formative assessments. Iteratively refine by analyzing outcomes.

Engaging Faculty
- Honor faculty time and expertise
- Take advantage of casual encounters
- Redirect faculty frustrations into professional development experiences

Post-class Debriefing / Pre-class Briefing
Instructors discuss student performance and difficulties in course transitions; this drives revision of earlier courses.

✓ ASTR 241 ↔ ASTR 242
☐ ASTR 210, 242 ↔ ASTR 300
✓ ASTR 300 ↔ ASTR 301
☐ ASTR 301 ↔ ASTR 494

Writing Rubric
Instructors for ASTR 300L, 301, and 494 are testing and refining a rubric to guide student growth in:
- Control of syntax and mechanics
- Communication tools, such as tables, lists, and figures
- Content
- Reasoning

Item Analysis
Early stages of mapping exam questions to learning objectives, e.g.:

In the absence of read noise, what is the error on the measured number of photons, \(N \)?

SLO 2: “Be able to formulate scientific problems in mathematical terms and apply analytical and numerical methods towards its solution.”

Requires knowledge of counting (Poisson) statistics, be able to calculate the square-root of a number.